Analysis of Gumbel Model for Software Reliability Using Bayesian Paradigm

نویسندگان

  • Raj Kumar
  • Ashwini Kumar Srivastava
  • Vijay Kumar
چکیده

In this paper, we have illustrated the suitability of Gumbel Model for software reliability data. The model parameters are estimated using likelihood based inferential procedure: classical as well as Bayesian. The quasi NewtonRaphson algorithm is applied to obtain the maximum likelihood estimates and associated probability intervals. The Bayesian estimates of the parameters of Gumbel model are obtained using Markov Chain Monte Carlo(MCMC) simulation method in OpenBUGS(established software for Bayesian analysis using Markov Chain Monte Carlo methods). The R functions are developed to study the statistical properties, model validation and comparison tools of the model and the output analysis of MCMC samples generated from OpenBUGS. Details of applying MCMC to parameter estimation for the Gumbel model are elaborated and a real software reliability data set is considered to illustrate the methods of inference discussed in this paper. KeywordsProbability density function; Bayes Estimation; Hazard Function; MLE; OpenBUGS; Uniform Priors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran

Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...

متن کامل

Bayesian paradigm for analysing count data in longitudina studies using Poisson-generalized log-gamma model

In analyzing longitudinal data with counted responses, normal distribution is usually used for distribution of the random efffects. However, in some applications random effects may not be normally distributed. Misspecification of this distribution may cause reduction of efficiency of estimators. In this paper, a generalized log-gamma distribution is used for the random effects which includes th...

متن کامل

Exponentiated Gumbel Model for Software Reliability Data Analysis using MCMC Simulation Method

In this paper, the Markov chain Monte Carlo (MCMC) method has been used to estimate the parameters of Exponentiated Gumbel(EG) model based on a complete sample. A procedure is developed to obtain Bayes estimates of the parameters of the Exponentiated Gumbel model using MCMC simulation method in OpenBUGS, an established software for Bayesian analysis using Markov Chain Monte Carlo (MCMC) method....

متن کامل

Sensitivity of the Bayesian Reliability Estimates for the Modified Gumbel Failure Model

The classical Gumbel probability distribution is modified in order to study the failure times of a given system. Bayesian estimates of the reliability function under five different parametric priors and the square error loss are studied. The Bayesian reliability estimate under the non-parametric kernel density prior is compared with those under the parametric priors and numerical computations a...

متن کامل

Bayesian Estimation of Parameters in the Exponentiated Gumbel Distribution

Abstract: The Exponentiated Gumbel (EG) distribution has been proposed to capture some aspects of the data that the Gumbel distribution fails to specify. In this paper, we estimate the EG's parameters in the Bayesian framework. We consider a 2-level hierarchical structure for prior distribution. As the posterior distributions do not admit a closed form, we do an approximated inference by using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012